
3An Introduction to Shell Scripting

Chapter One

• echo
• echo "\c"
• read
• if-then-fi
• [=, !=]
• nested if statements
• else
• elif
• shell variables
• case-in-esac
• ;;
• case *) default option
• double-quotes

4

3

4

2

1

Menus are one of the simplest shell scripts. All they have to do is display some
options, ask the user to select one and run a command based on the user input.
On the facing page are three simple menus. Whilst they will all appear to work the
same, they have been written in different ways to illustrate various if-then-else
constructs supported by shell script. The fourth position shows how the menus
look when executed.
Menu1 starts with several echo commands. Echo is the shell’s primary printing
mechanism and as it’s name suggests, echo simply prints whatever is passed to it
within the double-quotes. Echo automatically adds a newline to the printed text.
Thus, the first five lines of menu1 display the three menu options with a blank
line above and below to make the menu look better when executed:

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo

1 - Who is logged on
2 - Disk space
3 - Date and time

will produce
the following

output

Note that the echo command with no arguments only prints an empty line;
echo "" is unnecessary and generally not used.
The sixth echo line displays a prompt, so that the user can enter a selection. Here,
echo is not required to add a newline to the end of the text, which will mean that
the cursor remains next to the colon. Again this is aesthetic.
To prevent echo from adding a newline, the text to be printed should end with
"\c". This is classed as an escape sequence, as it has a specific meaning to echo.
For example, the diagram below shows the effect of the echo "Select" line with
and without the "\c":

echo "Select: \c"

Select: _

cursor after text

echo "Select: "

Select:

_

cursor on next line

Some shells do not support echo "\c". If the shell you are using does not behave
correctly, see Appendix B for shell compatibilities and remedial actions.
The read command, on the next line, reads a single line of input from the user
and assigns it to the variable specified; in this instance INPUT. The variable
INPUT will be created if it does not already exist and should it exist, the contents
will be overwritten.

ec
ho

 "
\c

"
ec

ho
re

ad

Chapter One

5An Introduction to Shell Scripting

1

4

2

3

menu2

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 fi
 fi
fi

menu1

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
fi

if ["$INPUT" = "2"]
then
 df -k
fi

if ["$INPUT" = "3"]
then
 date
fi

menu3

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
elif ["$INPUT" = "3"]
then
 date
fi

1 - Who is logged on
2 - Disk space
3 - Date and time

Select: 3
Mon 8 Oct 2001 GMT 19:06

Chapter One

6

1 Having listed the available options and obtained a response from the user, menu1
now processes the user input.
Menu1 uses three independent if statements; one for each option. The code after
the if is called the test statement. If the test statement is true, the code between
the then and the fi is executed. The test statement is examined separately below.
The then and fi are part of the if statement. Then is effectively a noise word (no
purpose other than to make the code read better), though it is part of the syntax
and therefore obligatory. Fi terminates the if statement. For every if there must be
a then and a fi.

if ["$INPUT" = "1"]

then

 who -q

fi

if
 s

ta
te

m
en

t
co

m
p

o
n

en
ts

this command is executed when
the test statement is true

space

test
statement

The test statement is bounded by square brackets ([]). Each component of the
test statement must be separated from it’s neighbour by a space. Also, note that in
order to access the contents of the INPUT variable, it must be preceded by a “$”.
Variable assignment and usage is covered later in this chapter.

["$INPUT" = "1"]

space

start

spaces

end

operatorLHS

(Left Hand Side)
RHS

(Right Hand Side)

The test statement illustrated here is divided into three main components; the
Left Hand Side (LHS), the operator and the Right Hand Side (RHS). The
operator here is the equals sign and this instructs the test statement to check
whether the LHS is the same as the RHS.

te
st

 st
at

em
en

t
 if

, t
he

n
an

d
fi

eq
ua

ls

Chapter One

7An Introduction to Shell Scripting

1

1

1

menu1

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
fi

if ["$INPUT" = "2"]
then
 df -k
fi

if ["$INPUT" = "3"]
then
 date
fi

menu2

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 fi
 fi
fi

menu3

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
elif ["$INPUT" = "3"]
then
 date
fi

1 - Who is logged on
2 - Disk space
3 - Date and time

Select: 3
Mon 8 Oct 2001 GMT 19:06

Chapter One

8

1

Menu1 is inefficient because each of the three if statements are processed every
time menu1 is executed. The flow diagram next to menu1, opposite, shows that
even after option 1 has been matched and the who -q command executed, the
script still checks for options 2 and then for 3.
To make menu1 more efficient, it has been rewritten as menu2, so that once the
correct option has been found, no more checks are made. The flow diagram next
to menu2 demonstrates how after option 1 has been selected and who -q is
executed, the script skips the rest of the checks and terminates.
Menu2 achieves this greater efficiency by using the else component of the if
statement. An else component means that there are two separate sections of
code, only one of which will be executed. Any code between the then and the else
is executed if the test statement is true and any code between the else and the fi is
executed if the test statement is false.

if ["$INPUT" = "1"]
then
 who -q
else
 date
fi

if
 s

ta
te

m
en

t
co

m
p

o
n

en
ts

this command is executed
when the test statement is true

this command is executed
when the test statement is false

Menu2 uses three nested if statements. A nested if statement is an if statement that
resides inside another if statement. The layout of menu2 also shows how
indentation can be used to make shell scripts more readable. For example, at the
bottom of menu2 are three fi’s. The relative levels of indentation should indicate
which fi belongs to which if.

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 fi
 fi
fi

o
u
te

r
if

 s
ta

te
m

e
n

t

n
e
s
te

d
 i
f
 s

ta
te

m
e
n

t

n
e
s
te

d
 i
f

s
ta

te
m

e
n

t

Menu2 is rather messy, though. If a further six options were added to menu, the
indentation would become somewhat excessive. It is also hard to pick out the
menu commands from the rest of the programming text.

el
se

ne
st

ed
 if

 s
ta

te
m

en
ts

Chapter One

9An Introduction to Shell Scripting

1

menu1

Menu options
are displayed

Has option
1

been chosen?

Has option
2

been chosen?

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
fi

if ["$INPUT" = "2"]
then
 df -k
fi

if ["$INPUT" = "3"]
then
 date
fi

Script ends

Has option
3

been chosen?

User selects
an option

Run the command
who -q

yes

n
o

Run the command
df -k

yes

Run the command
date

yes

n
o

n
o

menu2

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 fi
 fi
fi

Menu options
are displayed

Has option
1

been chosen?

Has option
2

been chosen?

Script ends

Has option
3

been chosen?

User selects
an option

Run the command
who -q

yes

n
o

Run the command
df -k

yes

Run the command
date

yes

n
o

n
o

Chapter One

10

1

5

4

3

2

Menu3 uses elifs to overcome the layout problems encountered in menu2. Menu3
works identically to menu2 but the else-if sections have been combined into elif's.
This makes menu3 a much shorter (and narrower) script than menu2. Menu3 is
also slightly more readable than menu2. Note, that the use of elifs means that
menu3 contains only a single fi, thus converting the three nested if statements in
menu2 into a single, multi-stage if statement.

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 fi
fi

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
fi

can be
condensed

using elif's to

In all the shell code examined to date, the role of the double-quotes has been
largely ignored. Understanding the use and effect of double-quotes within shell
scripting is a significant step in writing trouble-free shell scripts.
In pure programming terms, nearly all of the double-quotes in the menus 1-3 are
unnecessary. On the lower half of the opposite page is menu2q; menu2 with all
the double-quotes removed. Menu2q works identically to it’s quoted equivalent,
menu2, except for two main errors.
The first error is that the echo Select \c line no longer works as expected. This is
because the \c needs to be enclosed in double-quotes in order to be passed to
echo, as an unquoted backslash has special significance to the shell. Here, the
unquoted backslash is stripped out by the shell, echo prints an extra “c+newline”
and the cursor is displayed on the wrong line (see bottom right, opposite).
For this reason, echo statements will generally use double-quotes to ensure the
output is not corrupted by the unwanted attentions of the shell. Besides, echo
statements simply look more natural with double-quotes.
Next, to see the second error, run menu2q and press <Return> when prompted.
Menu2q will generate an error where menu2 would not have (bottom right
example, opposite). This is due to that way that the shell code is parsed. In shell
script, variables are substituted before the code is interpreted, rather than as an
integral part of the interpretation. So when the if statement for option 1 is parsed
with an empty $INPUT, the shell will try to execute the following, which is
erroneous and will result in an error message.

if [= 1]if [$INPUT = 1] if $INPUT is empty
will evaluate to

As a result, it is advisable that any variables used in test statements should be
enclosed in double-quotes.

do
ub

le
-q

uo
te

s
ec

ho
 \

c
eli

f

Chapter One

11An Introduction to Shell Scripting

1

1

2

3

5

menu2q

echo
echo 1 - Who is logged on
echo 2 - Disk space
echo 3 - Date and time
echo
echo Select: \c
read INPUT

if [$INPUT = 1]
then
 who -q
else
 if [$INPUT = 2]
 then
 df -k
 else
 if [$INPUT = 3]
 then
 date
 fi
 fi
fi

1 - Who is logged on
2 - Disk space
3 - Date and time

Select: c
<Return>
test: argument expected

unwanted

character

4

menu2

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 fi
 fi
fi

menu3

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
elif ["$INPUT" = "3"]
then
 date
fi

3

5

Chapter One

12

2

1

The next stage of development for these
menus is to enhance them to include
exception handling; that is, for when the
user selects an invalid option.

Menu1d is a new version of menu1. Code
new for menu1d is marked by the circles.
The script works by recording whether a
user selected a valid option by setting a
variable $FOUND. This is performed
within the if statements.
At the end of the script a new if
statement checks $FOUND and if it is
not equal (!=) to YES an error message is
displayed. $FOUND will only be set to
“YES” if a valid option was selected.

Note that there is no specific command required to create shell variables. Any line
that starts with a word, followed immediately by an equals sign will cause a
variable to be created. The variable will be assigned the value after the equals sign.
Shell variable names have to start with a letter and can only contain letters,
numbers and underscores; no spaces. Whilst shell variables can use upper or
lowercase letters, uppercase variable names are normally used to help distinguish
them from the rest of the shell code.

FOUND="YES"

no spaces

Variable being
created

Variable
contents

!=
 n

ot
 e

qu
als

cr
ea

tin
g

sh
ell

 v
ar

iab
les

menu1d
echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
 FOUND="YES"
fi

if ["$INPUT" = "2"]
then
 df -k
 FOUND="YES"
fi

if ["$INPUT" = "3"]
then
 date
 FOUND="YES"
fi

if ["$FOUND" != "YES"]
then
 echo "Invalid selection"
fi

2

1

Chapter One

13An Introduction to Shell Scripting

Menu2 & menu3 are easy to convert to include default handling. Both scripts
require an else statement with a suitable message after the date command.

menu2d

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
else
 if ["$INPUT" = "2"]
 then
 df -k
 else
 if ["$INPUT" = "3"]
 then
 date
 else
 echo "Invalid selection"
 fi
 fi
fi

menu3d

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
elif ["$INPUT" = "3"]
then
 date
else
 echo "Invalid selection"
fi

Chapter One

14

1 On the opposite page is menu4, which introduces a new command: case. A case
statement works somewhat like the if-elif construct in menu3d in that a single
value is compared against a list and some code executed as a result; they are just
laid out a little different.
By comparing the location of the various components of the case statement with
menu3d, opposite, it should be possible to identify the key areas. Menu3d and
menu4 work identically.

case "$INPUT"

in

 1) who -q ;;

 2) df -k ;;

 3) date ;;

 *) echo "Invalid Selection"

 ;;

esac

compare
"$INPUT" to:

start

data to be compared

end

end of option

commands run
when matched

default

The following points should be noted regarding case statements:
• The data to be compared ($INPUT as usual) is located after the keyword

case and before the keyword in. It should be enclosed in double-quotes.
• The in-esac pair delimits the body of the case statement.
• Options 1, 2 & 3 are listed opposite the commands to be executed when

matched.
• There should not be a space between the option and the close bracket or

the case statement will generate a “syntax error”.
• The ;; separates the individual case options.
• After a match, the code between the “)” and the “;;” is executed.
• The final asterisk (*) is used for default handling. The asterisk means

literally "match anything" and as such should always be the last option in a
case statement.

• Case statements do not have to have a default handler.
• The case statement will process only the first option that matches

$INPUT.
• The ;; can be on a different line to the option.

ca
se

2

3

4

5

6

7

Chapter One

15An Introduction to Shell Scripting

3

7

6

4

3

1

menu4

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

case "$INPUT"
in
 1) who -q ;;
 2) df -k ;;
 3) date ;;

 *) echo "Invalid selection"
 ;;
esac

Case statements are very compact, but are remarkably flexible. Menu4 is much
easier to read than menu3d owing to the lack of repeated code.
Case statements are used extensively throughout this book. They should be
studied carefully as they provide a significant level of functionality not found in
any other shell command.

2

5

menu3d

echo
echo "1 - Who is logged on"
echo "2 - Disk space"
echo "3 - Date and time"
echo
echo "Select: \c"
read INPUT

if ["$INPUT" = "1"]
then
 who -q
elif ["$INPUT" = "2"]
then
 df -k
elif ["$INPUT" = "3"]
then
 date
else
 echo "Invalid selection"
fi

Chapter One

