
17An Introduction to Shell Scripting

Chapter Two

• while loops (while true)
• tput clear
• echo "*"
• case [])
• case "")
• continue
• break
• exit
• sleep
• echo "\n"

18

7

6

5

4

3

2

1

On the facing page is a new menu; fullmenu. There are several new commands but
the core of the script is made up from menu4 in Chapter One. The script is
designed to loop continuously and will only terminate when the quit (Q) or exit
(X) options are selected.
The first line introduces the while command. While loops are one of the two main
loop mechanisms available to shell programmers, the other being the for loop.
While loops are designed to repeatedly run a section of code whilst a test
condition remains true.
A while loop is bounded by do-done keywords; i.e. it uses the keywords do and
done in the same way that an if statement uses then and fi.

while true

do

 some code

done

w
h

ile
 s

ta
te

m
en

t
co

m
p

o
n

en
ts test

condition

The simplest form of the while loop is the while true loop. This equates to an
infinite loop that must be explicitly terminated. The while true loop is used in
fullmenu simply to return the execution to the start of the script after each option
is processed.
The first command within the while loop is tput clear. Tput is a program that allows
the screen to be controlled by name; tput clear means clear the screen. Rather than
having to know the terminal escape-sequence to clear the screen, we can get tput
to do it for us. Similarly, tput can turn underlining on and off, reposition the
cursor or make the terminal beep.
Having obtained a clear screen, the first echo line is used to display a rudimentary
title. The asterisks have a special meaning to the shell and thus require quoting.

echo * echo "*"
will not behave

the same as

The next section of code is largely taken from menu4, with the “Q - Quit” line
added. All the echo statements used here have had two spaces inserted in front of
the text to indent the menu slightly in order to make it more aesthetically pleasing.
The case statement in fullmenu is now quite large. The first three options are the
standard ones from menu4, but after that come three new options.
The "") continue ;; line handles empty input; i.e. if the user only presses <Return>.
We do not want empty input to be reported as an “Invalid selection” by the
default handler lower down so we trap it here and handle it specifically.
The empty double-quotes have to be used to refer to an empty case option
otherwise the shell will complain about a “syntax error”.

w
hi

le
tp

ut
 c

lea
r

w
hi

le
tr

ue
ec

ho
 "

*"
ca

se
 "

")

Chapter Two

19An Introduction to Shell Scripting

2

7

6

5

4

3

2

1

fullmenu

while true
do
 tput clear

 echo " **** Sample Menu ****"
 echo
 echo " 1 - Who is logged on"
 echo " 2 - Disk space"
 echo " 3 - Date and time"
 echo
 echo " Q - Quit"
 echo
 echo " Select: \c"
 read INPUT

 case "$INPUT"
 in
 1) who -q ;;
 2) df -k ;;
 3) date ;;

 "") continue ;;
 [Qq]) break ;;
 [Xx]) exit ;;

 *)
 echo "Invalid selection"
 sleep 2
 continue
 ;;
 esac

 echo "\nPress Return to continue \c"
 read ANS
done

echo "Goodbye"

Chapter Two

20

2

1

A continue within a while loop will cause the while loop to restart, the test
statement is re-evaluated and if true, the code between the do and done will be
executed. Here, restarting the while loop results in the screen being cleared and
the menu redrawn.
The next line services the “Q – Quit” option. The line could be written
Q) break ;; but this would only quit when uppercase Q was used but here the
menu will quit if either case is used. A single line is used to represent uppercase
and lowercase Q, but we could have used two entries, one for Q) and a second
for q), but the ability to match multiple inputs with a single statement is an
important part of case statements.

case "$INPUT"
in
 [Qq]) break ;;
esac

case "$INPUT"
in
 Q) break ;;
 q) break ;;
esac

is the

same as

The break command relates to the while-true loop as the continue did, but whilst
the continue restarts the while loop, break aborts it, passing control immediately to
the code after the done.
To illustrate the break command properly the script includes a hidden “exit”
option on the next line (it is classed as hidden, as the option is not advertised for
the users). An upper or lowercase X can be used and will result in the exit
command being called. Exit causes the script to stop immediately.
So, when using this menu, selecting Q will result in the “Goodbye” message seen
at the bottom of the script, whilst selecting X will not.

while true
do
 some code to set $INPUT

 case "$INPUT"
 in
 "") continue ;;
 [Qq]) break ;;
 [Xx]) exit ;;
 esac
done

echo "Goodbye"

continue

break

exit

co
nt

in
ue

ca
se

 [
])

op
tio

n
br

ea
k

ex
it

Chapter Two

3

21An Introduction to Shell Scripting

3

2

1

fullmenu

while true
do
 tput clear

 echo " **** Sample Menu ****"
 echo
 echo " 1 - Who is logged on"
 echo " 2 - Disk space"
 echo " 3 - Date and time"
 echo
 echo " Q - Quit"
 echo
 echo " Select: \c"
 read INPUT

 case "$INPUT"
 in
 1) who -q ;;
 2) df -k ;;
 3) date ;;

 "") continue ;;
 [Qq]) break ;;
 [Xx]) exit ;;

 *)
 echo "Invalid selection"
 sleep 2
 continue
 ;;
 esac

 echo "\nPress Return to continue \c"
 read ANS
done

echo "Goodbye"

Chapter Two

22

The default case statement has been modified from menu4. The “Invalid
selection” message is now improved by a little more code for aesthetical reasons.
The sleep 2 (self-explanatory I hope) allows the error message to be read before
the continue causes the screen to be cleared and the menu redrawn.
Without the sleep, the “Invalid selection” message appears then disappears too
quickly to be seen.
All the commands associated with the various options produce some output that
the user will want to see. The script could pause for a couple of seconds then
clear the screen, but the script displays a message saying “Press <Return> to
continue” and waits for the user to comply.

Select: 1

Wed 5 Dec 2001 GMT 07:20

Press <Return> to continue _

This is implemented by the code between the esac and done.
Placing such code here saves us having to put a pause mechanism within each
individual option, making the script more concise.
The echo "\nPress <Return> to continue \c" line contains a “\n” at the start. This
means insert a newline.
For example:

echo "\nPress <Return> to continue \c"

is the same as

echo

echo "Press <Return> to continue \c"

ec
ho

 "
\n

"

1

sle
ep

2

Chapter Two

23An Introduction to Shell Scripting

2

1

fullmenu

while true
do
 tput clear

 echo " **** Sample Menu ****"
 echo
 echo " 1 - Who is logged on"
 echo " 2 - Disk space"
 echo " 3 - Date and time"
 echo
 echo " Q - Quit"
 echo
 echo " Select: \c"
 read INPUT

 case "$INPUT"
 in
 1) who -q ;;
 2) df -k ;;
 3) date ;;

 "") continue ;;
 [Qq]) break ;;
 [Xx]) exit ;;

 *)
 echo "Invalid selection"
 sleep 2
 continue
 ;;
 esac

 echo "\nPress Return to continue \c"
 read ANS
done

echo "Goodbye"

Chapter Two

24

Case statements are such an important part of shell scripting that it is worth
examining them a bit more closely. On this and the following page are three case
statements that prompt for and validate Yes/No input, setting $YESNO
appropriately. $YESNO could then be used elsewhere in a script.

yesno1

echo "Do you want to continue? \c"
read YESNO

case "$YESNO"
in
 y*) YESNO="yes" ;;
 *) YESNO="no" ;;
esac

.

The first script, yesno1, accepts any input starting with a lowercase “y” to be yes
and all other replies to be no. Thus, replying “yES” is accepted as “yes”, but
“Yes” is not accepted and will cause $YESNO being set to no. <Return> is
assumed to be no, as would “quit” and “nyes”.
“y*” in a case statement means anything starting with a “y”.

yesno2
while true
do
 echo "Do you want to continue [no]? \c"
 read YESNO

 case "$YESNO"
 in
 "") YESNO="no"
 break
 ;;
 [Yy]*) YESNO="yes"
 break
 ;;
 [Nn]*) YESNO="no"
 break
 ;;
 *) echo "Please enter (Y)es or (N)o" ;;
 esac
done

The second script, yesno2, uses while true to loop until an acceptable input is
provided. The echo statement includes “[no]” which is the traditional Unix
method of indicating the default reply. The case statement here explicitly traps an
empty reply (“”) and assigns the default value, then break’s out of the while loop.

Chapter Two

25An Introduction to Shell Scripting

All other input is validated to start with either Y or N (upper or lowercase) for yes
and no respectively. They too will break out the while true loop. If the case
statement reaches the default (*) handler then some invalid input has been
entered. A simple error message is shown and the while true loop will loop which
causes the “Do you want to continue [no]:” message to be displayed and the user
will have to enter again.

yesno3
while true
do
 echo "Do you want to continue? \c"
 read YESNO

 case "$YESNO"
 in
 [Yy]) YESNO="yes"
 break
 ;;
 [Yy]es) YESNO="yes"
 break
 ;;
 [Nn]) YESNO="no"
 break
 ;;
 [Nn]o) YESNO="no"
 break
 ;;
 *) echo "Please enter (Y)es or (N)o" ;;
 esac
done

The third script, yesno3, is much more fussy about the quality of the reply
provided, only accepting one of the following replies: Y, y, Yes, yes, N, n, No and
no. Yesno3 has no default reply.

Chapter Two

