
An Introduction to
Shell Scripting

Published in the United Kingdom by:
Slash Etcetera Ltd
4 Highwater View

St Leonards-on-Sea
TN38 8EL

01424 855022
info@slashetcbooks.co.uk

Copyright © Glen Smith 2002

The moral right of the author has been asserted.

This book is sold subject to the condition that it shall not, by way of trade or
otherwise, be lent, resold, hired out or otherwise circulated without the

publisher’s prior written consent in any form of binding or cover over than that
in which it is published and without a similar condition including this condition

being imposed upon the subsequent purchaser.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted at any time or by any means electronic,

mechanical, photocopying, recording or otherwise, without the prior written
permission of the publisher.

A catalogue record for this book is available from
the British Library.

ISBN 0 9544010 0 X

Printed by:
Antony Rowe Ltd

2 Whittle Drive
Highfield Industrial Estate

Eastbourne
BN23 6QH

www.antonyrowe.co.uk

Glen Smith

g
Bourne and Korn shell scripts

#!

iAn Introduction to Shell Scripting

Contents

Introduction .. iii
Getting started ... v
Basic vi commands vi
Useful vi commands vii
Commands by chapter viii
Scripts by chapter .. x
Glossary .. xii
Tutorial section .. 1
Reference section 190
Appendix A - debugging shell scripts 309
Appendix B - using other shells 315
Index ... 316

ii

iiiAn Introduction to Shell Scripting

Introduction
Everybody has a different approach to learning a programming language. Many
people, myself included, like to pick apart small, but whole example programs
that can be run, changed and then rerun. The individual commands can be
examined in detail by using command references like the Unix man pages.
Following this approach, this book describes the 57 commands and topics below.
The scripts in the tutorial section show each command in situ, whilst the reference
section covers the commands individually.

• &&
• ¦¦
• $0
• $1, $2 ... $9
• $#
• ${#VAR}
• $?
• $*
• $IFS
• $RANDOM
• $SECONDS
• $()
• (()), $(())
• >/dev/null
• #!

The scripts in the book are not geared towards any particular section of the Unix
community. There are no examples specific to system administrators or web
administrators; the scripts are designed to be as generic as possible.
The reason for this is that, in my experience, most people who want to learn how
to shell script already know the commands to do their jobs. They are hoping to
write some shell scripts in order to make their jobs easier.
Shell scripts are used to combine commands. More often than not, they are used
to take the output from a command, extract some relevant piece of information
and run a secondary command on this data.
A good example of this is a backup script. First, the data requiring backing up is
identified (e.g. df). The filesystems are then extracted from this list and a backup
command ran against these filesystems. If the filesystem list changes, the script
automatically adapts.

• Arrays
• backslash
• bc
• break
• cal
• case
• cat
• Comments
• continue
• cut
• date
• Double-quotes
• echo
• eval
• exit

• exit-code
• expr
• false
• for
• getopts
• grep
• if
• nl
• pipe
• read
• Run-quotes
• sed
• set
• Shell functions
• shift

• sleep
• stty
• test
• tput
• tr
• true
• typeset
• unset
• Variables
• wc
• while
• whitespace

iv

The tutorial section is divided into sixteen chapters, each containing a script of a
page or less. In order to help the reader follow the descriptive text, the current
script is displayed on every right-hand page and the lines of the script that are
described on a given page are indicated by page markers. This is intended to help
readers locate the text for a section of the script they are interested in. The index
entries are also separated out, again to aid location.

Index
marker

Page
marker

Page
marker

The book makes extensive use of code illustrations. Any examples that start with
a “$” can be entered at the command prompt (the initial “$” should not be
entered). If the command extends over more than one line, the continuation
prompt “>” is used. The “$” and “>” values are stored in the environment
variables $PS1 & $PS2:

$ if ["$DAY" = "Mon"]

> then

> _

$ echo "PS1=$PS1, PS2=$PS2"

PS1=$, PS2=>

$PS1

$PS2

Small example scripts are shown as tabbed boxes:

$ hwex

Hello World

This script
is executed

by this example

hwex

echo Hello World

Many of the commands used in shell scripting are also English words. In order to
distinguish between the two, commands such as if, then, while, for, do, done, test etc
are shown in italics in the text.

vAn Introduction to Shell Scripting

Getting Started
If you have never written a shell script before you may need the information on
this page to get you started.
Shell scripts are only text files, but in order to run them they need to be flagged
as executable. This is achieved by the chmod command. In the example below a
script called “hwex” is created, is then make executable and is finally executed.
The script prints the words “Hello World”.

$ echo "echo Hello World" > hwex

$ chmod +x hwex

$ hwex

Hello World

Create hwex

make it executable

run hwex

In the example above, the text of the script was created using a echo statement.
This is fine for one line scripts, but for anything else the only realistic option is to
use a editor. The standard editor with Unix is vi.
To start a vi session simply enter vi and the filename you want to edit or create. If
the file does not exist, there will be a “[New File]” message at the bottom of the
screen. For an existing file, the contents will be displayed.
Vi starts in command mode which means that in order to enter any text, you first
have to enable insert mode. This is achieved with the “a” command (append). To
return to command mode use the “Esc” key.
To save the file use “:w”. When the colon is entered, it will appear at the bottom
of the screen. To save and exit the file use “:wq” or “ZZ”. Remember to make
the file executable before trying to run it.
The pages overleaf contain a list of useful vi commands.
One very useful, but underused, feature of vi is the ability to run a script without
exiting. This is achieved via the “:!” construct which allows a shell command to be
typed after the exclamation mark. Thus, to run the hwex command, enter
“:!hwex” and press <Return>.

vi

Basic Vi Commands

a append text after the cursor use ESC to terminate insert mode
i insert text use ESC to terminate insert mode
A append to end of line use ESC to terminate insert mode
o open (insert) a line below the current one (insert mode is also turned on)
O open (insert) a line above the current one (insert mode is also turned on)

x delete
dw delete word
dd delete line
D delete to end of line

r replace one character
cw change a word use ESC to terminate insert mode

w move forward a word
b move back a word
0 move to start of line
$ move to end of line
1G move to first line
G move to end of file

:w save file
:wq save and exit file
ZZ save and exit file
:q! exit without saving

viiAn Introduction to Shell Scripting

u undo last action

~ change case of a character

Y Copy a line into the buffer
p Print contents of buffer after cursor
P Print contents of buffer before cursor

J Join lines

. Repeat last action

:!cmd Run cmd
:!% Run current file
:!chmod +x % Make current file executable

:r file read contents from file into current script
:n goto line n

Vi has extra “:set” modes that can make it easier to use.

:set ts=4 sw=4 set 4 space tabstops (default is 8)
:set showmode shows what mode you are in (insert, append etc)
:set ic case insensitive searches
:set ai auto-indent (use ^D in insert mode to go back a tabstop)
:set noerrorbells don’t beep on error (e.g. pressing Esc when not needed)
:set noflash don’t flash the screen on error

Vi also reads the variable EXINIT and will apply any modes contained in it.

Useful Vi Commands

viii

Commands by Chapter

Chapter One
• echo, echo "\c"
• read
• if-then-fi
• [x = y],[x != y]
• nested if statements
• else
• elif
• case-in-esac
• shell variables
• ;;
• case *)
• double-quotes

Chapter Two
• while loops (while true)
• tput clear
• echo "*"
• case [])
• case "")
• continue
• break
• exit
• sleep
• echo "\n"

Chapter Three
• $1, $2 ... $9
• if [-lt, -le, -eq, -ne, -gt, -ge, -ne]
• if [-o]
• case ¦)
• Comments - #
• $?
• cal
• pipe - ¦
• grep, grep "$"
• > /dev/null
• echo " \" "

Chapter Four
• run-quotes - ` `
• cut -d -f
• &&
• while read
• bc
• expr

Chapter Five
• Korn shell
• #!/bin/ksh
• Arrays
• tr "x" "y"
• ((expression)), $(())
• cmd ¦ read

Chapter Six
• set -A
• backslash - \
• typeset -Zn
• typeset -Ln
• date "+format"
• sed -e "s/x/y/g"

ixAn Introduction to Shell Scripting

Commands by Chapter

Chapter Seven
• case ?)

Chapter Eight
• [-z "$VAR"]
• tr -d "[0-9]"
• [-n "$VAR"]
• $()

Chapter Nine
• Shell functions
• fatal()
• $0
• $*

Chapter Ten
• sed -e "s/./& /g"
• whitespace compression

Chapter Eleven
• sed -e "s/\(\)/\1/"
• " `cmd` "

Chapter Twelve
• Processing passed parameters
• shift
• Single-quotes - ' '
• $IFS
• ${#VAR} (length)
• set -- args

Chapter Thirteen
• getopts :wcl VAR
• case \?)
• $OPTIND
• $OPTARG
• shift n

Chapter Fourteen
• tr '[a-z]' '[.*]'
• tput cup 0 0
• tr -c "[$VAR\n]" '[.*]'
• single-quotes
• eval
• echo "\b"
• echo "\r\c"
• tput el
• $SECONDS

Chapter Fifteen
• if [! -f "$WORDLIST"]
• grep -c
• grep "^"
• $RANDOM
• grep "^ *$NUM[]"

Chapter Sixteen
• trap
• tput smso, tput rmso
• stty -g
• stty -a
• stty -echo
• stty -icanon min 0 time 50

x

Scripts by Chapter

Chapter One
menu1 A simple menu
menu2 Like menu1 but uses else for efficiency
menu3 Like menu2 but using elif
menu4 Menu3 rewritten using a case statement

Chapter Two
fullmenu A usable menu
yesno Simple case statements used for requesting a Yes or No answer

Chapter Three
validdate Checks the supplied date

Chapter Four
dow Returns the Day of Week from a supplied date

Chapter Five
dow2 A Korn shell version of dow

Chapter Six
tomorrow Returns tomorrow’s date. Output format can be selected

Chapter Seven
numcvt Converts any number under one thousand to English text

Chapter Eight
counter Used to test numcvt with a series of values
counter2 Counter with limited validation for supplied values
counter3 Counter with all input validated

Chapter Nine
counter3f Counter3 rewritten using shell functions
numcvt2 Numcvt with input validation

xiAn Introduction to Shell Scripting

Scripts by Chapter

Chapter Ten
numcvt3 The final and best version of numcvt

Chapter Eleven
num2words Number to English converter that works over one thousand

Chapter Twelve
wc2 A simple shell version of the Unix command wc

Chapter Thirteen
wc3 A more featured version of wc2 using getopts

Chapter Fourteen
hangman Guess the word game

Chapter Fifteen
random_word Select a word from a file of words. Used by hangman

Chapter Sixteen
fancymenu Fullmenu from Chapter Two with enhancements
mkpwd Create an encrypted password for fancymenu

xii

ampersand
The “&” character

asterisk
The “*” character

backslash
The “\” character. Forces a character to be treated as text, rather than shell
code. Used to embed double-quotes within double-quotes.

builtin
A sub-command of the shell, implemented within the shell rather than by
calling an external program.

carriage-return
ASCII character 11, moves the cursor to the left edge of the screen, but
leaves the cursor on the same line.

command line
The string used to invoke a program. The first word is the program name
and all other words are arguments. Command line arguments translate to
passed parameters within a program.

complement
Exactly opposite; a mirror image (e.g. true and false)

double-quotes - “ ”
escape sequence

A sequence of non-printing text that indicates a special condition to
software or hardware; e.g. turn on underlining.

exit-code
The final status of a program when it exited. Exit-code zero usually means
success, anything else means failure.

indentation
The use of left-hand spacing to layout code in a more readable format

iteration
Once around a programming loop

Glossary

xiiiAn Introduction to Shell Scripting

keyword
A word that has special significance to the shell; e.g. in, done, case

metacharacters
Special characters that might be replaced during command parsing; e.g. *.

nested
One inside another.

newline
ASCII character 10, moves the current position down one line.

parse
Interpretation by a program.

passed parameters
Information specified on a command line that modifies the action of a
program. Referenced within a script by $1, $2 etc.

<Return>
The Return key on the keyboard

single-quotes - ‘ ’
super shells

High functionality shells like Korn and Bash.
syntax

Strict rules relating to text layouts and interpretation
whitespace

Space, tab and (often) newlines. Sometimes ignored, sometimes
compressed - see the reference entry

Glossary

xiv

