
191An Introduction to Shell Scripting

Reference
Section

• &&
• ¦¦
• $0
• $1, $2 ... $9
• $#
• ${#VAR}
• $?
• $*
• $IFS
• $RANDOM
• $SECONDS
• $()
• (()), $(())
• /dev/null
• 2> filename
• 2>&1
• #!
• Arrays
• backslash
• bc
• break

• Builtin
• cal
• case
• cat
• Comments
• continue
• cut
• date
• Double-quotes
• echo
• eval
• exit
• exit-code
• expr
• false
• Filename expansion
• for
• getopts
• grep
• if
• nl

• pipe
• read
• Run-quotes
• sed
• set
• Shell functions
• shift
• sleep
• stty
• test
• tput
• tr
• true
• typeset
• unset
• Variables
• wc
• while
• whitespace

Reference Section

192

&&

&&

The && pair are effectively a one line if statement with the syntax
“cmd1 && cmd2”. The command to the left of && is executed and if it exits
with an exit-code of zero, then the right-hand command is also executed. The
left-hand command is typically a test statement:

["$END" = "Y"] && exit 0

if this command exits
with exit-code zero

then run this
command

cmd1 && cmd2

cmd1
if [$? -eq 0]
then
 cmd2
fi

if cmd1
then
 cmd2
fi

is
equivalent

to
and

Whilst the && syntax is limited by not supporting an “else” statement or multiple
lines of code as if does, it is very useful for condensing one line, simple if
statements.

if ["$MIN" -lt 0]
then
 MIN=0
fi

if [-z "$DAY"]
then
 DAY=`date "+%a"`
fi

["$MIN" -lt 0] && MIN=0

[-z "$DAY"] &&
 DAY=`date "+%a"`

can be

condensed to

Note that the && syntax allows a newline after “&&”. This allows the code to be
laid out in a more readable format as && statements can get very long.

See also: ¦¦, test, if

Reference Section

225An Introduction to Shell Scripting

continue [n]

Continue is used as a control mechanism for the for and while loops. When a
continue is called within a loop, the execution of the loop is immediately returned
to the beginning.
When called within a while loop, the test statement is re-evaluated prior to the loop
being restarted (i.e. if the test statement was true) and when called within a for
loop, the loop is restarted with the next word from the list:

CNT=0
while [$CNT -le 10]
do
 ((CNT += 1))

 [$CNT -eq 5] && continue

 echo "$CNT"
done

echo "Finished" Will both
produce the

following
output

1
2
3
4
6
7
8
9
10
Finished

continue called

for CNT in 1 2 3 4 5 6 7 8 9 10
do
 [$CNT -eq 5] && continue

 echo "$CNT"
done

echo "Finished"

When used with a number, continue will cause nested loops to be restarted:

Will produce
the following

output

a1

a2

a3

b1

b2

b3

c1

c3

d1

d2

d3

Finished

continue called

for X in a b c d

do

 for Y in 1 2 3

 do

 ["XY" = "c2"] &&

 continue 2

 echo "XY"

 done

done

See also: break

continue

Reference Section

250

grep "pattern" FILENAME

command ¦ grep "pattern"

grep -v "pattern" FILENAME

grep -i "pattern" FILENAME

grep -c "pattern" FILENAME

grep -n "pattern" FILENAME

grep "pattern" FILE1 FILE2 [FILE3 [...]]

grep -l "pattern" FILE1 FILE2 FILE3 [...]

Grep is a program that searches through files or piped input looking for matches
to the pattern specified on the command line. Any lines that contain the pattern
are printed out. In it’s simplest form grep will simply look for plain text as
specified as the first argument:

$ grep "nus" planets
Venus
Uranus
$ cat planets ¦ grep "ar"
Earth
Uranus

planets

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

Grep takes a number of command line options that modify it’s behaviour. Grep -v
reverses the matching, so that only lines that do not match the pattern are printed.
Grep -i makes the pattern matching case insensitive.

$ grep -v "nus"
planets
Mercury
Earth
Mars
Jupiter
Saturn
Neptune
Pluto

$ grep -i "ur"
planets
Mercury
Saturn
Uranus

grep

Reference Section

251An Introduction to Shell Scripting

Grep -c means that grep counts the number of lines that contain the pattern. Lines
that contain multiple instances of pattern are only counted once. Grep -n reports
the line numbers of any lines matched:

$ grep -c "r" planets
6
$ grep "r" planets
Mercury
Earth
Mars
Jupiter
Saturn
Uranus

$ grep -n "ur" planets
1: Mercury
6: Saturn

The various options can be combined:

$ grep -ivn "ur" planets
2: Venus
3: Earth
4: Mars
5: Jupiter
8: Neptune
9: Pluto

If more than one file is specified on the command line, grep will add the filename
to any output generated. This allows the user to identify which files contained the
matched lines.

$ grep "ia" dogs cats
dogs: Alsatian
cats: Persian
cats: Siamese

cats

English Blue
Burmese
Persian
Siamese
Somali

dogs

Alsatian
Boxer
Greyhound
Lurcher
Whippet

Grep -l will only display the names of any files that contain the pattern.

$ grep -l "ia" dogs cats
dogs
cats

grep

Reference Section

252

Pattern matching with grep
The real power of grep comes from the pattern matching which allows the
programmer to be very precise when specifying what to match.
The following metacharacters have a special meaning to grep (and to sed):

 ^ - start of line

 $ - end of line

 . - any single character

 * - multiple characters

 [] - any character between the square brackets

\{ \} - a specific number of characters

The carat (^) and dollar-sign ($) anchor the search to the start and/or end of the
line:

$ grep "^S" cats
Siamese
Somali

$ grep "r$" dogs
Boxer
Lurcher

The period (.) means match any single character:

$ grep "a.u" planets
Saturn
Uranus
$ grep "^.....$" planets
Venus
Earth
Pluto

planets

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

search for "a" then
 any character then "u"

search for 5 character words

The square brackets ([]) indicate that grep should match any one of the
characters specified within:

$ grep "u[st]" planets
Venus
Uranus
Pluto
$ grep "^[JE]" planets
Earth
Jupiter

search for "u" then
 any charcater from "st"

search for any line starting
 with one of "JE"

grep

Reference Section

253An Introduction to Shell Scripting

See also: cat, sed

A range of characters can be specified within the square brackets by using a
minus:

$ grep "u[r-z]" planets
Mercury
Venus
Saturn
Uranus
Pluto
$ grep "[A-N][a-n]" planets
Mercury
Earth
Mars
Neptune

planets

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

search for "u" then any character
 between "r" and "z"

search for an uppercase character
 between "A" and "N", then a
 lowercase letter between "a" and
 "n"

If a minus is to be matched within the square brackets, it must be placed
immediately after the open bracket.
The asterisk (*) means “match any number of the previous character”. When
combined with the period, it means “match anything”, and when combined with
the square brackets it means “match any number of the characters within the
square brackets”:

$ grep "pi*t" planets
Jupiter
Neptune
$ grep "a.*s" planets
Mars
Uranus
$ grep "e[n-z]*e" planets
Neptune

search for "p" then any number of

 "i"s, then "t"

search for "a", anything, "s"

search for "e", any number of letters

 between "n" and "z", then "e"

zero "i"s matched

Finally, the “\(\)” pair can be used in place of the asterisk to limit the matches to
exactly a number of matches, or between a range of matches:

$ grep "r[a-z]\{2\}u" planets
Uranus
$ grep "r[a-z]\{1,3\}u" planets
Mercury
Uranus

search for "r", then 2 lowercase
 letters, then "u"
search for "r", then between 1 and
 3 lowercase letters, then "u"

grep

